Noise Filtering By N Point Mobile Media


Ho bisogno di progettare un filtro media mobile che ha una frequenza di taglio di 7.8 Hz. Ho usato muovendo filtri medi prima, ma per quanto Im conoscenza, l'unico parametro che può essere alimentata in è il numero di punti da media. Come può questo riferirsi a una frequenza di cut-off L'inverso di 7.8 Hz è di 130 ms, e sto lavorando con i dati che vengono campionati a 1000 Hz. Questo implica che dovrei essere usando una dimensione della finestra del filtro media mobile di 130 campioni, o c'è qualcos'altro che Im manca qui ha chiesto 18 luglio 13 a 9:52 Il filtro media mobile è il filtro utilizzato nel dominio del tempo per rimuovere il rumore aggiunto e anche per levigare scopo, ma se si utilizza lo stesso filtro media mobile nel dominio della frequenza per la separazione di frequenza allora performance sarà peggiore. quindi in questo caso la frequenza dell'uso filtri dominio ndash user19373 3 febbraio 16 a 5:53 Il filtro media mobile (a volte conosciuto colloquialmente come filtro vagone) ha una risposta impulsiva rettangolare: Oppure, indicazioni diverse: Ricordando che una risposta in frequenza di sistemi a tempo discreto è uguale al tempo discreto trasformata di Fourier della risposta all'impulso, possiamo calcolare come segue: nei erano più interessato per il caso è la risposta in ampiezza del filtro, H (omega). Utilizzando un paio di semplici manipolazioni, possiamo ottenere che in una forma più facile da comprehend: Questo potrebbe non sembrare più facile da capire. Tuttavia, a causa di Eulero identità. ricordare che: Quindi, possiamo scrivere quanto sopra come: Come ho detto prima, ciò che tu sei davvero preoccupa è l'entità della risposta in frequenza. Quindi, possiamo prendere la grandezza di quanto sopra per semplificare ulteriormente: Nota: Siamo in grado di rilasciare i termini esponenziali fuori perché essi non influenzano l'entità del risultato e 1 per tutti i valori di omega. Poiché xy xy per ogni due finite numeri complessi x ed y, possiamo concludere che la presenza dei termini esponenziali dont influenza la risposta complessiva grandezza (invece, influenzano la risposta di fase sistemi). La funzione risultante all'interno delle parentesi grandezza è una forma di kernel Dirichlet. A volte è chiamato una funzione sinc periodica, perché assomiglia alla funzione sinc un po 'in apparenza, ma è periodica, invece. In ogni caso, dal momento che la definizione di frequenza di taglio è un po 'underspecified (-3 dB -6 dB primo punto nullo lobo laterale), è possibile utilizzare l'equazione di cui sopra per risolvere per qualsiasi cosa avete bisogno. In particolare, è possibile effettuare le seguenti operazioni: Set H (omega) al valore corrispondente alla risposta del filtro che si desidera alla frequenza di taglio. Impostare omega uguale alla frequenza di taglio. Per mappare una frequenza a tempo continuo al dominio tempo discreto, si ricordi che frac omega 2pi, dove fs è la frequenza di campionamento. Trovare il valore di N che ti dà la migliore accordo tra le parti della mano sinistra e destra dell'equazione. Questo dovrebbe essere la lunghezza del vostro media mobile. Se N è la lunghezza della media mobile, quindi una frequenza di taglio approssimativa F (valido per N gt 2) in Fffs frequenza normalizzata è: L'inverso di questo è Questa formula è asintoticamente corretto per N grande, e ha circa 2 errore per N2, e meno dello 0,5 per N4. Post scriptum Dopo due anni, ecco finalmente quale fosse l'approccio seguito. Il risultato è stato basato sulla approssimare lo spettro di ampiezza MA intorno f0 come una parabola (2 ° Serie ordine) in base a MA (Omega) circa 1 (frac - frac) OMEGA2 che può essere reso più preciso vicino al passaggio per lo zero di MA (Omega) - frac moltiplicando per un coefficiente Omega ottenendo MA (Omega) circa 10,907,523 mila (frac - frac) OMEGA2 La soluzione di MA (Omega) - frac 0 dà i risultati di cui sopra, dove 2pi F Omega. Tutto quanto sopra si riferisce alla -3dB frequenza di taglio, l'oggetto di questo post. A volte, però è interessante per ottenere un profilo di attenuazione in stop-banda che è paragonabile a quella di un 1 ° ordine IIR filtro passa basso (LPF unipolare) con un dato -3dB frequenza di taglio (ad esempio un LPF viene anche chiamato integratore leaky, avente un polo non esattamente DC ma vicino ad esso). Infatti sia il MA e il 1 ° ordine IIR LPF hanno pendenza -20dBdecade nella banda di arresto (uno ha bisogno di una N grande di quello utilizzato nella figura, N32, per vedere questo), ma che, MA ha null spettrale a FKN e un 1f evelope, il filtro IIR ha solo profilo 1f. Se si vuole ottenere un filtro MA con simili capacità di filtraggio del rumore da questo filtro IIR, e corrisponde al 3dB tagliato frequenze essere la stessa, sul confronto tra i due spettri, si renderebbe conto che il ripple banda di arresto del filtro MA finisce 3dB inferiore a quello del filtro IIR. Al fine di ottenere la stessa fermata banda ondulazione (cioè a parità di potenza attenuazione del rumore) come IIR filtrano le formule possono essere modificate come segue: ho trovato di nuovo lo script di Mathematica dove ho calcolato il limite per diversi filtri, tra cui quella MA. Il risultato è stato basato sul ravvicinamento spettro MA intorno f0 come una parabola in base a MA (Omega) Sin (OmegaN2) Sin (OMEGA2) Omega 2piF MA (F) PI2 circa N16F2 (N-N3). E derivante all'incrocio con 1sqrt da lì. ndash Massimo 17 gennaio 16 alle 2: 08Documentation Questo esempio mostra come utilizzare in movimento filtri medi e ricampionamento per isolare l'effetto di componenti periodiche del momento della giornata su letture di temperatura orarie, così come rimuovere il rumore linea indesiderato da una tensione ad anello aperto misurazione. L'esempio mostra inoltre come lisciare i livelli di un segnale di clock preservando i bordi utilizzando un filtro mediano. L'esempio mostra anche come utilizzare un filtro Hampel per rimuovere grandi valori anomali. La motivazione Smoothing è il modo in cui scopriamo importanti modelli attualmente in vendita, lasciando fuori le cose che sono poco importante (rumore cioè). Usiamo il filtro per eseguire questa levigante. L'obiettivo di smoothing è quello di produrre lenti cambiamenti di valore in modo che la sua più facile vedere le tendenze attualmente in vendita. A volte, quando si esaminano i dati di input si potrebbe desiderare di smussare i dati al fine di vedere una tendenza nel segnale. Nel nostro esempio abbiamo una serie di letture di temperatura in gradi Celsius prese ogni ora all'aeroporto Logan per tutto il mese di gennaio 2011. Si noti che possiamo vedere visivamente l'effetto che l'ora del giorno ha sulle letture di temperatura. Se si è interessati solo alla variazione di temperatura giornaliera nel corso del mese, le fluttuazioni orarie contribuiscono solo rumore, che può rendere le variazioni giornaliere difficile da discernere. Per rimuovere l'effetto del momento della giornata, vogliamo ora per lisciare i nostri dati utilizzando un filtro media mobile. Un Moving Filter Media Nella sua forma più semplice, un filtro a media mobile di lunghezza N prende la media di ogni N campioni consecutivi di forma d'onda. Per applicare un filtro media mobile a ciascun punto di dati, costruiamo i nostri coefficienti del nostro filtro in modo che ogni punto è equamente ponderato e contribuisce 124 alla media totale. Questo ci dà la temperatura media su un periodo di 24 ore. Filter Delay noti che l'uscita filtrato viene ritardata di circa dodici ore. Ciò è dovuto al fatto che il nostro filtro a media mobile ha un ritardo. Qualsiasi filtro simmetrica di lunghezza N avrà un ritardo di (N-1) 2 campioni. Siamo in grado di tenere conto di questo ritardo manualmente. Estrazione differenze medie In alternativa, si può anche utilizzare il filtro media mobile per ottenere una stima migliore di come l'ora del giorno influenza la temperatura generale. Per fare questo, prima, sottrarre i dati levigate dalle misure di temperatura orarie. Poi, segmentare i dati differenziata in giorni e prendono la media su tutti i 31 giorni del mese. Estrazione Peak Busta A volte ci vorrebbe anche avere una stima senza intoppi o meno di come gli alti e bassi del nostro segnale di temperatura cambiano ogni giorno. Per fare questo possiamo usare la funzione di inviluppo per collegare alti e bassi estremi rilevati nel corso di un sottoinsieme del periodo di 24 ore. In questo esempio, ci assicuriamo che ci sono almeno 16 ore tra ogni estremamente bassa alta ed estrema. Possiamo anche ottenere un senso di come gli alti e bassi sono trend prendendo la media tra i due estremi. Weighted Moving Filtri media Altri tipi di movimento filtri medi non appesantire ogni campione ugualmente. Un altro filtro comune segue l'espansione binomiale (12,12) n Questo tipo di filtro approssima una curva normale per grandi valori di n. È utile per filtrare il rumore ad alta frequenza per n piccolo. Per trovare i coefficienti per il filtro binomiale, Convolve 12 12 con se stesso e quindi in modo iterativo convolve l'uscita con 12 12 un determinato numero di volte. In questo esempio, utilizzare cinque iterazioni totale. Un altro filtro in qualche modo simile al filtro gaussiano espansione è il filtro a media mobile esponenziale. Questo tipo di filtro a media mobile ponderata è facile da costruire e non richiede una grande dimensione della finestra. Di regolare un filtro media mobile esponenziale ponderata da un parametro alfa tra zero e uno. Un valore più elevato di alfa avrà meno lisciatura. Ingrandire la letture per un giorno. Seleziona il tuo CountryMoving filtro media (filtro MA) Caricamento in corso. Il filtro media mobile è un semplice filtro passa-basso FIR (Finite Impulse Response) comunemente usato per lisciare una serie di campionati datasignal. Prende M campioni di ingresso alla volta e prendere la media di questi M-campioni e produce un singolo punto di uscita. Si tratta di una struttura molto semplice LPF (Filtro passa basso), che viene portata di mano per gli scienziati e gli ingegneri di filtrare componente rumoroso indesiderati dai dati previsti. Come la lunghezza del filtro aumenta (il parametro M) la scorrevolezza degli aumenti di uscita, mentre le transizioni taglienti nei dati sono fatte sempre più smussato. Questo implica che il filtro ha un'eccellente risposta nel dominio del tempo, ma una risposta in frequenza scarsa. Il filtro MA svolgere tre funzioni importanti: 1) Ci vogliono punti di ingresso M, calcola la media di questi M-points e produce un unico punto di uscita 2) A causa delle computationcalculations coinvolti. il filtro introduce una quantità definita di ritardo 3) Il filtro agisce come un filtro passa basso (con scarsa risposta nel dominio di frequenza e una buona risposta nel dominio del tempo). Codice Matlab: A seguito di codice MATLAB simula la risposta nel dominio del tempo di un M-punto mobile filtro media e traccia anche la risposta in frequenza per varie lunghezze di filtro. Time Domain Risposta: Al primo trama, abbiamo l'ingresso che sta succedendo nel filtro media mobile. L'ingresso è rumoroso e l'obiettivo è di ridurre il rumore. La figura seguente è la risposta di uscita di un punto 3 Moving Average filtro. Si può dedurre dalla figura che il 3 punti Moving filtro media non ha fatto molto a filtrare il rumore. Aumentiamo i rubinetti filtro a 51 punti e possiamo vedere che il rumore in uscita è ridotta molto, che è rappresentato nella figura seguente. Aumentiamo i rubinetti ulteriormente a 101 e 501 e si può osservare che, anche-se il rumore è quasi zero, le transizioni siano smussati su drasticamente (osservare il pendio sulla lati del segnale e confrontarle con la transizione muro ideale il nostro ingresso). Risposta in frequenza: Dalla risposta in frequenza si può affermare che il roll-off è molto lento e l'attenuazione banda di arresto non è buona. Tenuto conto di questa banda di attenuazione di arresto, in modo chiaro, il filtro media mobile non può separare una banda di frequenze da un'altra. Come sappiamo che una buona prestazione nei risultati dominio del tempo in scarso rendimento nel dominio della frequenza, e viceversa. In breve, la media mobile è un eccezionale buon filtro smoothing (l'azione nel dominio del tempo), ma un filtro passa-basso eccezionalmente avverse (l'azione nel dominio della frequenza) Link esterni: Libri consigliati: Sidebar primaria

Comments

Popular Posts